首页 > 医卫类考试> 中医助理医师
题目内容 (请给出正确答案)
[主观题]

设V是数域F上一个有限维内积空间,配备了一个内积f,证明以下两条件等价:(ii)f关于V的任意基的格

设V是数域F上一个有限维内积空间,配备了一个内积f,证明以下两条件等价:

设V是数域F上一个有限维内积空间,配备了一个内积f,证明以下两条件等价:(ii)f关于V的任意基的格

(ii)f关于V的任意基的格拉姆矩阵非奇异。

满足上述条件的内积叫作非退化的。

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“设V是数域F上一个有限维内积空间,配备了一个内积f,证明以下…”相关的问题
第1题
设f是数域F上有限维向量空间V上一个大退化内积。g:VxV→F是F上另一个内积,证明存在V的唯一的线性变换σ,使得对于一切α,β∈V,都有g(α,β)=f(σ(α),β)。证明:g是非退化的当且仅当σ是非奇异线性变换。

点击查看答案
第2题
设V是复数域上线性空间,其维数n≥2,f(α,β)是V上一个对称双线性函数。1)证明:V中有非零向量ξ使f(ξ,ξ)=0;2)如果f(α,β)是非退化的。则必有线性无关的向量ξ,η满足f(ξ,η)=1,f(ξ,ξ)=f(η,η)=0。

点击查看答案
第3题
设V是数域F上一切mxn矩阵所构成的向量空间。C是一个取定的mxm矩阵,定义证明:f是V上一个双线性函

设V是数域F上一切mxn矩阵所构成的向量空间。C是一个取定的mxm矩阵,定义证明:f是V上一个双线性函数,f是不是对称的?

点击查看答案
第4题
设V是数域F上一个一维向量空间。证明V到自身的一个映射σ是线性映射的充要条件是:对于任意ξ∈V,都有σ(ξ)=aξ,这里a是F中一个定数。

点击查看答案
第5题
设σ是数域F上n维向量空间V到自身的一个线性映射。W1,W2是V的子空间,并且V=W1⊕W2。证明:σ有逆映射的充要条件是V=σ(W1)⊕σ(W2)。

点击查看答案
第6题
设V是复数域上一个n维向量空间,σ是V的一个线性变换。令是定理1的那个准素分解,令W是V的一个在σ

设V是复数域上一个n维向量空间,σ是V的一个线性变换。令是定理1的那个准素分解,令W是V的一个在σ之下不变的子空间。证明:这里Wi=W∩V,i=1,2,...,k。

点击查看答案
第7题
设V1,V2为数域F上n维线性空间V的两个子空间,且dimV1=dimV2,证明:存在子空间W,使V=V1⊕W=V2⊕W.

点击查看答案
第8题
设σ是数域F上n维向量空间V的一个可以对角化的线性变换。令λ1,λ2,···,λt是σ的全部本
征值。证明,存在V的线性变换σ1,σ2,···,σt,使得

点击查看答案
第9题
设是数域P上n维线性空间V的一个线性变换,证明:1)在P[x]中有一次数≤n2的多项式f(x),使2)

是数域P上n维线性空间V的一个线性变换,证明:

1)在P[x]中有一次数≤n2的多项式f(x),使

2)如果,那么这里d(x)是f(x)与g(x)的最大公因式;

3)可逆的充分必要条件是,有一常数项不为零的多项式f(x)使

点击查看答案
第10题
设V是数域P上一个线性空间,f1,...,fk是V上k个线性函数。证明:V的任一个子空间皆为某些线性函数的零化子空间。

点击查看答案
退出 登录/注册
发送账号至手机
密码将被重置
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改