
[主观题]
设V是数域F上一个有限维内积空间,配备了一个内积f,证明以下两条件等价:(ii)f关于V的任意基的格
设V是数域F上一个有限维内积空间,配备了一个内积f,证明以下两条件等价:
(ii)f关于V的任意基的格拉姆矩阵非奇异。
满足上述条件的内积叫作非退化的。
查看答案

设V是数域F上一个有限维内积空间,配备了一个内积f,证明以下两条件等价:
(ii)f关于V的任意基的格拉姆矩阵非奇异。
满足上述条件的内积叫作非退化的。
设V是数域F上一切mxn矩阵所构成的向量空间。C是一个取定的mxm矩阵,定义证明:f是V上一个双线性函数,f是不是对称的?
设V是复数域上一个n维向量空间,σ是V的一个线性变换。令是定理1的那个准素分解,令W是V的一个在σ之下不变的子空间。证明:
这里Wi=W∩V,i=1,2,...,k。
设是数域P上n维线性空间V的一个线性变换,证明:
1)在P[x]中有一次数≤n2的多项式f(x),使
2)如果,那么
这里d(x)是f(x)与g(x)的最大公因式;
3)可逆的充分必要条件是,有一常数项不为零的多项式f(x)使