
如果一个离散信源的失真矩阵按行划分成若千个子集,并且每行的元素是其他行元素的置换,解列的元


(1)证明如果离散信源的失真矩阵足行准对称失真矩阵,且在划分的子矩阵中信源输入符号的概半相等,那么通过与失真地阵具有同样对称性且满足失真约束的试验信道可以达到R(D)。
(2)一个包含3符号的信源X。符号集为{-1,0,1},概率分别为: p,1-2p,P, (p≤1/2):试验信道输出Y,符号集含2个符号{-1,1},失真测度为求R(D)函数。

(1)证明如果离散信源的失真矩阵足行准对称失真矩阵,且在划分的子矩阵中信源输入符号的概半相等,那么通过与失真地阵具有同样对称性且满足失真约束的试验信道可以达到R(D)。
(2)一个包含3符号的信源X。符号集为{-1,0,1},概率分别为: p,1-2p,P, (p≤1/2):试验信道输出Y,符号集含2个符号{-1,1},失真测度为求R(D)函数。
(1) 证明如果离散信源的失真矩阵是列准对称失真矩阵,且输入符号是等概率的,那通过与失真矩阵具有同样对称性且满足失真约束的试验信道可以达到R(D)。
(2)设无记忆信源X,符号集A=(0,1,2,3},符号等概率。试验信道输出集合Y的号集B={0, 1,2,3,4,5,6},且失真函数定义为证明,R(D)函数如图9.1所示。
若某无记忆信源时.按收符号
其失真矩阵为
。 求信源的最大平均失真度和最小平均失真度,并求选择何种信道可达到该Dmax和Dmin的失真度。
一个四元对称信源接收符号Y={0,1,2.3}, 其失真矩阵为
。求Dmax和Dmin以及信源的R(D)函数,并画出R(D)的曲线(取4至5个点)。
一个四元信源X,各符号的概率分别为p/2,(1- p)/2,(1-p)/2,p/2.失真矩阵为:
其中,p<1/2.求信源的R(D)函数,并画出曲线。
组,用与其汉明距离最近的汉明码码字所对应的4位信息符号来代表,通过无噪声信道进行传输:在接收端,用接收的4位信息符号所对应的码字表示信源分组。
(1)求编码器的码率和编码系统的平均失真。
(2)将(1) 的结果与R(D)比较(设失真测度为汉明失真)。
(3)对于任意1,应用(2-1,2 -l-1)汉明编码,求码率和平均失真。
互联网是一张有向图,每一个网页是图的一个顶点,网页间的每一个超链接是图的一个边,邻接矩阵B=(b)w如果从网页i到网页j有超链接,则by=1,否则为0。
记矩阵B的列和及行和分别是它们分别给出了页面j的链人链接数目和页面i的链出链接数目。假如在上网时浏览页面并选择下一个页面的过程,与过去浏览过哪些页面无关,而仅依赖于当前所在的页面。那么这一-选择过程可以认为是一一个有限状态、离散时间的随机过程,其状态转移规律用Markov链描述。定义矩阵A=(ay)wxn为
式中:d是模型参数,通常取d=0.85;A是Markov链的转移概率矩阵;ay表示从页面i转移到页而j的概率。根据Markov链的基本性质,对于正则Markov链存在平稳分布x=
式中:x为在极限状态(转移次数趋于无限)下各网页被访问的概率分布,Google将它定义为各网页的PageRank值。假设x已经得到,则它按分量满足方程
网页i的PageRank值是划,它链出的页面有τ个,于是页面i将它的PageRank值分成r份,分别“投票"给它链出的网页。x为网页k的PageRank值,即网络上所有页面“投票给网页k的最终值。根据Markov链的基本性质还可以得到,平稳分布(即PageRank值)是转移概率矩阵A的转置矩阵AT的最大特征值(=1)所对应的归一化特征向量。
已知一个N=6的网络如图4.8所示,求它的PageRank取值。
设信源X= {0, 1,2},相应的概率分布为p(0)= p(1)= 0.4, p(2)= 0.2。且失真函数为
(1)求此信源的R(D)。
(2)若此信源用容量为C的信道传递,请画出信道容量C和其最小误码率Pk之间的曲线关系。