
将某二元信源的输出序列分成长度都是7个符号的分组并给定一个(7,4)汉明码,对每7个符号的信源分
组,用与其汉明距离最近的汉明码码字所对应的4位信息符号来代表,通过无噪声信道进行传输:在接收端,用接收的4位信息符号所对应的码字表示信源分组。
(1)求编码器的码率和编码系统的平均失真。
(2)将(1) 的结果与R(D)比较(设失真测度为汉明失真)。
(3)对于任意1,应用(2-1,2 -l-1)汉明编码,求码率和平均失真。

组,用与其汉明距离最近的汉明码码字所对应的4位信息符号来代表,通过无噪声信道进行传输:在接收端,用接收的4位信息符号所对应的码字表示信源分组。
(1)求编码器的码率和编码系统的平均失真。
(2)将(1) 的结果与R(D)比较(设失真测度为汉明失真)。
(3)对于任意1,应用(2-1,2 -l-1)汉明编码,求码率和平均失真。
设无记忆二进制信源先把信源序列编成矢量符号a, i=0,1, ..8,再替换成二进制变长码字,如题3.5表所示。
(1)验证码字的可分离性:
(2)求对应于一个矢量符号的信源序列的平均长度,
(3)求对应于一个码字的平均长度;
(4)计算并计算编码效率; .
(5)若用4位信源符号合起来编成二进制赫夫曼码,求它的平均码长,并计算编码效率。
A.对与同一平稳信源X,其发出的前后两个符号的平均信息量相同
B.一般情况下,输出两个符号的联合熵总是小于等于二倍信源的熵
C.序列的关联是可以延伸到无穷的
D.上面选项都错误
设信源模型为
(1)码符号集为X= {0,1,2},试对信源进行Huffman编码并求平均码长、编码效率和编码后信息传输速率。
(2)构造一种有约束的具有最小平均长度的异前置码,此约束是每个码字的第1个符号可以是0,1,2;后续的符号为0或1。
问题描述:给定正整数序列x1,x2,…,xn要求:
①计算其最长递增子序列的长度s.
②计算从给定的序列中最多可取出多少个长度为s的递增子序列.
③如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s的递增子序列.
算法设计:设计有效算法完成①、②、③提出的计算任务.
数据输入:由文件input.txt提供输入数据.文件第1行有1个正整数n,表示给定序列的长度.接下来的1行有n个正整数x1,x2,...,xn,
结果输出:将任务①、②、③的解答输出到文件output.txt.第1行是最长递增子序列的长度s.第2行是可取出的长度为s的递增子序列个数.第3行是允许在取出的序列中多次使用x1和xn时可取出的长度为s的递增子序列个数.
要利用重叠保留法来计算一个不定长序列x(n)通过一线性时不变系统h(n)的响应y(n),h(n)之长度为M=50。为此,将x(n)分段,每段长度N1=60,每次取出的各段必须重叠v个样值,与h(n)进行128点循环卷积后所得结果中应该保留s个样值,将这些从每一段保留的样值连接在一起时,得到的序列就是所要求的y(n)。
(a)v=?
(b)s=?
(c)设循环卷积的输出序列序号为0~127,求保留的s个点之起点序号与终点序号,即从循环卷积所得的128点中取出哪些点去和前后各段取出的点连接起来而得到y(n)。
问题描述:给定k个排好序的序列用2路合并算法将这k个序列合并成一个序列.假设采用的2路合并算法合并2个长度分别为m和n的序列需要m+n-1次比较.
试设计一个算法确定合并这个序列的最优合并顺序,使所需的总比较次数最少.
为了进行比较,还需要确定合并这个序列的最运合并顺序,使所需的总比较次数最多.
算法设计:对于给定的k个待合并序列,计算最多比较次数和最少比较次数合并方案.
数据输入:由文件input.txt给出输入数据.第1行有1个正整数k,表示有k个待合并序列.接下来的1行有k个正整数,表示k个待合并序列的长度.
结果输出:将计算的最多比较次数和最少比较次数输出到文件output.txt.
(1)证明如果离散信源的失真矩阵足行准对称失真矩阵,且在划分的子矩阵中信源输入符号的概半相等,那么通过与失真地阵具有同样对称性且满足失真约束的试验信道可以达到R(D)。
(2)一个包含3符号的信源X。符号集为{-1,0,1},概率分别为: p,1-2p,P, (p≤1/2):试验信道输出Y,符号集含2个符号{-1,1},失真测度为求R(D)函数。